AD=A064 T94

UNCLASSIFIED
| e |

184794

END
DATE
FILMED

dn;?g

CARNEGIE=MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER ==ETC F/G 9/2
ERROR RECOVERY IN CAPABILITY SYSTEMS: (U)
JUN 78 W A WULF» D LANCIAUX FU4u620=-73=-C=0074

CMU=CS=78=-127 AFOSR=TR=-79=0061 NL

{
e m"tfm .

——
A WO T

CMU-CS-78-127

Error recovery in capability systems

Didier Lanciaux (1)

William A. Wulf

Department of Computer Science
Carnegie Mellon University

June 1978 : D D c

Abstract: Methodologies and checking techniques have been proposed to improve
sofware reliability. It has also been argued that capability mechanisms are the natural
support for these techniques because they enhance modular decomposition .and
information hiding.

However, there is a conflict between these observations; modular decomposition limils

the possible recovery actions to the informalion that a module can access directly.

Each module must rely upon the reliability of those that it uses.

This paper presents a mechanism which allows recovery to be managed at any level in
the system while satisfying the information hiding principle. It is based on a save-
restore mechanism. In addition, primitives to define consislent states in the system are
provided by the Kernel.

(1): IRIA-Laboria, Domaine de Voluceau, 78150 Le Chesnay, France.

This work was supported by the Advanced Research Projects Agency of the
Department of Defense under contract F44620-73-C-0074 (which is monitered by the -
Air Force Office of- Scienlific Research).

1. Introduction.

2. The Object Model. 4
I

3. Introduction to the mechanism. 7 :
3.1. Vertical consistency. i 7

3.2. Horizontal Consislency. | 8

3.3. Introduclion to the mechanism. . 8 |
4. Vertical Consistency. 10

5. Horizontal Consistency. 14

6. Implementation. 17 |
7. Conclusion. i 21

8. References. 22, |

R [RCESTY |
» NTIS s Section
* g - n0e Puti Section O3

; : . |,|,-“. Y D
‘ X s RETRE. S

BY p—
DISTRIB, 10, /¥4 A21LTY CODES
Dist__ .- . cr_ SPECIAL

A

IR g T r”"“"mﬂm

1. Introduction.

Approaches to producing reliable sofware generally propose that programs be

designed so as to be small, simple, and understandable. These approaches rely upon
information hiding ‘such as suggesled by modular decomposition [Pa72) or data

abstraction [LZ74] Interdecpendencies among program fragments are thereby minimized

and accessible data is reduced to a minimum. Thus, software faulls should be more .

easily avoided and errors should be conlined; Yet, hardware failures can occur which
circumvent cenlrols performed at compile time and error recovery is needed.

Error recovery r'equir_es: 1) that failures be detected, and 2) that the damage they
may cause be limited as much as possible. Then, if possible, failures shouid be made
transparent to higher levels of the system. '

Capability-based systems have been shown to be a dynamic support to the above
programming principles and to et the recovery requirements [Li76, De76),
particularily when type extension is"jnployed. An exiended-type object is an instance
of a new type implemented by a mc;dule in terms of previously defined types. An
object of a given type can only l::e operated by thé appropriat§ type module;
conversely, a module can only operal(’: on dbjecls it receives as parameters. Thus, the
capability mechanism helps to enforce modularity and localize detection. Furthermore,
since modules are indeperdent and protecled from each other, the possible damage
that failures can cause is inherently limited.

Recovery requirements can be enforced by use of appropriate programming
disﬂplim [(Wu75) and techniques [Po78) Each module is responsible for the integrity

of the abstract concept it implements. As a module "sees” only a module above (its

A i A O S

e s

T —r T

caller) and possibly {he modules below (its callee’s), its reliability requirements are
clearly defined. Parameler checking prolects a module from misuse by its caller.
Additional consistency tesls are performed by the module on the objetts it is
responsible for. They are intended to delect possible latent failures as well as to
verify that functions performed according lo their specifications. If such checks failed,
either the responsibility of repairing the erroneous information is taken by the module,
or the concerned object is returned to a consistent state and the failure is reported to
the levels above (in terms of the abstraclion implemented by the module). Thus, a
module must also be ready to handle reported errors from lower levels.

Detection as well as recovery rely upon either lemporal or spatial redundancy.
Checking that a function performed according to its specifications will require, for
instance, that this function be partly performed again. On the other hand, internal
consistency checks require the presence of redundant information against which tests
can be performed. Both forms of redundancy are likely to be used together. Spatial
redundancy can be provided in either of two ways:

At the module level: When a module is activated on one of its functions,
values of the objects it operates on may be saved so that returning them
to a consistent state consists merely of restoring these values. The
- recursive cache provides such redundancy [Ra75). When the acceptance
test fails the previous consistent state is retrieved and either the
operation can be correcled or an error can be raised tqQ a higher level.
At the object level: Mainly, redundancy is provided at this level in order
to perform consistency checks on the object structure and to detect latent

errors. For inslance, double links in a list structure can provide for its
repair.

The higher levels in the system generally provide less redundancy, since a loss
there is often less vital to the system. This trade off is a matlter for the

implementation of the abstraction and does nol necessarily reflects the importance that

a user may alttach o a given object.

This method is not whally salisfatory. Object consislency relies on the

implementation of the abstraction, and no control is left o ils user. A user may be

concerned with a sequence of operalions on an object, and its consistency may be
related to that whole sequence. Should an error be detected, the recovery action
perjormed by the user may lhen require thal the object be returned lo the state it
held before the seduence took place. Such recovery would require one o undo the
sequence of operations. Even though the operations defined on a type may include
their inverses, undoing the sequence requires recording the operalions and the
definition of a (possibly complicated) inverse sequence. This is likely to be source of
new errors and may even be contradictory with other reliability requirements (e.g.,il
may requfra rights on the object which otherwise would be denied). Moreover, a
system crash during'a sequence of operalions can leave the objeds’.incom-istenl. TI\is

would be irrepairable since no record of the consistent state of these object has been

kepl. These remarks suggest that a global, user controlled approach is necessary.

.

S ————

2. The Object Model.

We noticed in section | that objecls of exlended-types are possibly formed of
objects of other previously defined lypes. Hence, the overall structure of an object
may describe a complicated graph when all components are considered. Moreover, this
graph may evolve during the life of the objecl. Some objecls may have their structure
complelely defined at their crealion-time while other objecls may add or remove
components during their life lime. C?mponcn!s may also be evenlually shared among
objects. According {o the dala abstraclion principle, the siructure ot an object and its
evolution are unknown at the level wtswere il is used. As the evolulion will probably be
different for objecls of the same lype, it is not clear what copying an object means
nor how o perform il. A model of 6bjec| composition is required. We will consider
two cases: the graph model and the component model.

In the graph model, each component of the object structure is a reference to an
independent object and all are of equal significance. Copying, restoring or saving such
an object is easy and concerns only the first level of the composilion. Such a
structure is exemplified by "direclories” (Figure 2). A "directory” is an associative
mechanism, mapping siring names to object references. It is implemented as a
capability-list which holds capabilities for objects, or !or other direclories which can
be accessed independently or through other siructures. The structure of the objects
that the directory holds is of no concern; these objects are maintained at other levels
of the syslem. Therelore copying a direclory consists of only copying the capability-
list.

In the component model, the representation of an object also holds the

representalion of ils components; however,lhe components are an in'tegnl part of the

”

e

B

object. An example of such a struclure is a file (Figure 2). A file can be formed of a
semaphore (used lo implement the open-close operations) and a segment which
contains the actﬁa| conlenls of the file. The semaphore and the segment a'« not
independent entities; .Ihey are part of the representation of the file. Therefore,

copying such an object also requires copying the representation of its components.

 Figure 1: The graph model.

These two examples represent extremes of possible object structures. One is a
pure graph model; the other is a pure component model. Even if examples can be
found of these two basic models, re::jvslruclures may make use of both of them at the

same time. For instance, a semaphore may be viewed as holding a component, its

i

u
value, and a reference to the first ele'n_\ent of a process list. The processes on this list

are nol componenls of the semaphore. Furthermore, this structure evolves during the

life of the object. Fortunately, the not|uro of this evolulion is completely known by the

4
i
]
Y
3
5
]
3
3

@

/

Figure 2: The component model.

operation which directs il. Thus the complete description of whether a given
component is a true c.OmponenI or a mere reference to an object can be‘kept at the
level of the object, and maintained by the operations defined on its type.

One more rer‘nark is. in order. Whether the structure of an object is related to the
graph modei or the comr;onent model may change according to the semantics of the
operation. Considering the file example again, it will be viewed by the file operations
as matching the component model. However, the saving of the file will probably not
involve the saving of the semaphore which therefore will no longer be considered as a
“true” component.

Here we will consider components of a struclure with regard lo the saving of the
state of an object. It is now clear that such operations are completely defined by the
type of objects since the type operations are able to maintain ﬁ description of their

structure.

3. Introduction to the mechanism.

So far we have considered local consistency at each level of abstraction. The

1

introduction asserted the need for ﬁlobal consistency as well. We will distinguish
between “vertical consislency” and “horizontal consistency”. Roughly, vertical
I

consistency refers to the sequential use of objects, and horizontal consistency refers

to preserving some invariant relation between a set of objects. i

3.1. Vertical consistency.

We previousI); noticed that the consistency of a sequence of operations should be
considered. For local consistency it was possible to define a consistent state before
an operation took place, and so it is also possible to consider the consistent state
which existed before a sequence was performed. Recovery consists of restoring this
state.

Since objects can be composed of several levels, the consistency of an object relies
on 'lhe consistency of its componelh(s down to the primitive levels. Hence, the
restoring of 'an object implies restoring all these components.

At the level where we consider it, the implementation of objects is hidden. The
prograr therefore requires the assistance of a mechanism to -define and save

consistent states. To preserve “information hiding", this mechanism should keep‘ihe

implementation of objects hidden, and should not require knowledge of the type of the

k : gbjecl to be saved. Il should be kep! as independent of the object ilself as possible,

and possibly be provided by the kernel.

R ——— s

il

e acki g g SR VRPN

3.2. Horizontal Consistency.
A simple example will suffice lo define horizontal consistency. Consider a data base
which holds the stalus of the checking accounts in a bank. The following transaction

records a transfer of 100 dollars from account A to account B:

read A;
A« A - 100;
urite A; .

ead B;

-

B B + 100;

urite B

The data base must be kept globally Ionsistent; here this means that A+B must be the

same before and afler the lransactio

takes place. Suppose a failure occurs after A
has been modified and thal this failure requires B to be restored. B cannot be
restored alone since A was already modified and the above requirement on A+B would

no longer hold. !

3.3. Introduction {o the mechanism.

Global consistency requires lies belween objects to be defined. However, in the
case ol horizontal consistency program assislénce is needed. One may notice that this
same problem occurs when the internal structure of an object is considered. At each
level of the composition components are tied by the same sort of consistency relation.

To allow these relationships to be expressed, we introduce the concept of

— - - - - TSR e

——— "
e oo P A TS

L s

consislency-sets. Providing that a is a set formed of A and B, the transaction of our

éxample would be written:

enter a:
transaction body;

exit aj

A consistency-sel is an object whose type is implemented by the kernel. The
purpose of consistency-sels is to define the scope of recovery actions and the set of
objects that are involved. Hence, access to these objects needs not be restricted.
Once a set has been entered, its objects are accessed freely by normal use of

_ capabilities.

Operations defined on this type are: enter, in, exit, restore. The enter and in
operations are performed in order to declare the current state of objects in the set to
be consistent with regard to the program. It triggers the saving of these objects.
Hence, in our example, A and B would be considered together and therefore kept
consistent with each other instead of being considered separately. The purpose of the
exit operation is to mark the end of the use of the set. It tells.also that the obiects in
the set are consisienl again with regard to the transaction. Therefore, the restore
operation, which allows a set to be returned to the (consistent) slate prior to the
enter, can only be performed if the set has not yet been exited. 1n order to allow the
identification of objects’ versions and the restoring of a set, both set and object

versions are stamped with the current clock time when sets are entered.

i
i

4. Vertical Consistency.

Consistency-sels are intended to mark the consistent state of a collection of objects
before an aclion takes place. This action will probably be expressed in terms of more
elementary actions that are implemented by functions defined in lower level modules.
Recovery requirements of these modules may lead to the declaration of consistency-
sels which may intersect with those previously entered.

For instance, consider our previous data base example. For the purpose of
recovery, the user declared the checking accounts A and B in the set a. .lmagine now
that the user called the data base manager in order to perform an operation on the
checking account A. In order to manage ils own recovery actions, the data base
manager probably declares a new set b which includes A. As far.-as the data.base
manager is concerned, the state of A before il was called is consistent. If a reCO\;ery
action is to be performed, this state must be reslo'red. Consequently, when the new
set b is enlered, the state of A mu;t be saved.

Now consider the transaction: when it receives control from the data base manager,
the current state of A must be the state it held when the set b was exited. The same
requirements apply to any consistency-sets that are entered sequentially. Therelor;:
when an enter operation is performed on a set which intersects with a set that the
same 'process already entered, new current versions are provided for any object of
this set, whether currenl versions already exist or not. The purpose of the enter
operation is to define a new "current” version. Consequently, between the enter and
the exil of a sel, several versions may have been stacked for some 61 its components.

However, the restore operation requires the retrievial of the version of each object of

[the set from which the current version was originally crealed. In order to make these

10

- 2 e . g W - A

versions idenlifiable, sels are slamped with the current clock time when they are
entered. When a new version is crealed for an object, this version is stamped in the
same way. Hence, when restoring a sel is required, the correct version of its objects
can be found by malching the time stamp thal the set holds with the time stamp of the
different versions of its objects. The correct version of an object is the version which
holds the time stamp whose value is the closest but smaller than the time stamp of the
set. Figure 3 shows this process. |

As the enter operalion declares the current version of its objects to be consistent
with regard to the coming transadi;n, so the exit operation declares the versions
created for the purpose of this transaction to be consistent again. But once a set has
been exited, new velrsions may be created |11rougl1 the same process for some of the
cbjects it holds, so that the consistent stale that it refers to would be lost. Therefore,
when sets are exited, they are stamped with the current clock value. The versions of
objects that such a set refers to are those whose stamps are the closest but smaller
than its own stamp. However, more recent versions can be referred to in other sets
and define a consistent state. The restoring of old versions would destroy these

consistent states. Therefore, once a set is exited, the restore operation can no longer

be performed. Instead new objects ‘whose representations are copies of the referred
versions can eventually be provided.

As a result of the exit operation, when intersecting sets are acted on sequentially,
the use of objects conlained in the embedding sels destroys the consistent state
reffered to by inner sets. Figure 3.2 illustraies this remark, where the versions exited
by the set S2 become the current versions of the set S1. If now objects of the set Sl

are accessed, the slale that set S2 refers to is no longer consistent with regard to the

11

Object A
Object B
Set S1 TSI Object C

: 1.A<L.S] l\ " 500 Tong %
Current m

version.

Figure 3.1: States of two nested sels.

Object_ A

SeISl —>(T Ry :
r.\ ‘r‘\ : T
© (fromsel 82) —x (o J“‘\)
| =
: r

Current version —> ¢ I_,\ :)
. M

Figure 3.2: Exiling an inner set.

action performed through S2. The correct use of sets would require that further
accesses to the objects of the‘ set S1 be done by entering a new set. Accesses to
these objects should never be done through S1 whose purpose is to refer to a
previous consistent state.

Noticing that new versions are proéided only when the first access is attempted, the

objects that an inner set such as S2 frold; can be put in such a state that any atlempt

to access them triggers the same pr;ouss as when the ouler set is entered for the

T

SO 8 e

first time. Hence, the crealion of new versions would be provoked and the consistent
state that the inner set holds would be saved.

A similar Aproblem arises when the restoralion of an outer set is made. The
consistent states that inner sels refer to are destroyed. However, one may notice that
the nesting of the sels reflects the nesting of operations which are o be cancelled
when object restoring occurs at ouler levels. Hence, such behaviorlis justified by the

fact that the restored ouler set had not yel been exited.

13

m——
.

5. Horizontal Consistencyi.

Horizontal consistency refers to relations between objecls. We extend it here lo
the case of objects used concurrently by parallel processes. As opposed fo
sequentially entered sets, objects wh’ch belong to sels used by concurrent processes
must exhibit the same version. This leads 1o conflicts which are known as resulling in
a "domino effect" [Ra75]

Considering our dala base again, a transaction {1 may be currenlly updaling the
checking accounts A and B while a transaction {2 is currently updating the checking
account B and C. Rules have been exhibiled which allow tl1 and {2 to execute
concurrently and consistently [(Gr75) However, if some failure in transacltion t1
resulls in the restoring of A, the dala base consistency may require B to be reslor;.-d
at the same time by restoring the set S1={AB}). As the restoring of B requires the
restoring of C through the set S2={B,C} declared by the transaction {2, this leads
eventually to a snow-ball effect where the transitive closure of all intersecting sets
must be taken inlo account. Moreover, as the restoring of sels is nut necessarily
handled by the processes which hold them, it resulls in processes backing-up. This
can lead to take into account even non inlersecting sets.

Figure 4 exemplifies this where squares exhibit the relations b‘elween processes.
Should process 4 fail at the point X, then the set of process 3 should be restored. But
at the considered lime process 3 was interacting with process 2 through intersecting
iets. and so the same procedure must be rbepeated with process 2 and then with
process 1. lssues relaled to recovery requirements have been analyzed in [Ra75] -

Processes must cooperate in providing the necessary recovery structure (referred

to as a "conversation"). While in our example transaction {1 was concerned with the

r"’ e

Process | Process 2 Process 3 Process 4

?
E
*
q
3
i

e e e B T PR, W |

Figure 4: Conversations between concurrent processes.

set S1~{AB} and transacticn 12 wilh SZ-}B,C}. the real recovery structure is formed of
S=Union(S1,52). The set S cannol be formed merely by merging S1 and S2; the
involved processes must have agreeq in the definition of the recovery structure and
this struclure must be common o the| sel of processes. Therefore, we will distinguish
belween conversalions and usual recovery structures.

When an enler operation is ailem.poled on a set which intersects with a set that
another process is using, the entefin;g of this set is refused and the operation fails.
For this purpose, when a set is enlered it is stamped with the process identification;
such a stamp is removed when il is exiled. Conversations require that the set which

E covers all the involved objects be previously enlered. The onhrin; of a conversation

by a process declares al the same time the recovery point (exactly as the enter
operalion did for other recovery structures) and the conversation it refers to. For
- this purpose a new operation is introduced: in S enter Si where S is the covering set
while Si is the subset used by the process. The set Si is linked to the set S and to its

other subsets. The reslore Si operalion triggers the restoring of S.

15

Hence, in our dala base example cach transaclion would be writlen:

in S enter Si; r

transaction body tis

exit Sis

Nolice that when a restoralion is performed, only the acting process controls its

.,

recovery aclion. Other processes are lo be backed up in order to execute again.
i Therefore, the point where these processes are to be backed up must be defined for
each of them. This point is the inslruction which follows the in operation they
. execuled. Such a back-up point can be saved in their subset when they execute the in
operalion.

The exit operation, as we previously defined it, declares a set to be consistent. In
the case of a conversalion such declaralion must be exlended to the covering set.
Therefore the exit operation is really performed when all the su!;sels have been

exited.

Finally, as menlioned earlier, the spreading of recovery aclions may affect
processes which were nol cooperating through inlersecting sels, The same remarks as
| above apply and we require all conversations to be nested so that recovery actions

can be defined without side effects. Hence, once an in operation has been perf.ormed

I, by a process any other in operation it performs must refer to a subset that it has

already enlered as a covering sel.

16

B

6. Implementation.

The creation of a consistency-sel takes a list of objects as an argument and returns

a capability for the crealed set. When newly crealed, a consistency-set does not refer

to any consistent state since il has not yel been stamped wilh a clock-time.

When a set is enlered, the objects it contains should be saved. But notice that they
are likely not to be in core. Therefore, instead of making a copy of them on,secondary
sh'larage their representation is brought into core and declared as the new version,
then space on secondary storage is provided for it. When the object representaﬁén is
already in core, it is considered as the new one and is swapped out so as to update
the previous version on secondary memory. Hence, creating a new version for an
object only requires secondary storage space allocation.

Remember that a capabilily identifies a unique descriptor of each object, and that
this descriptor contains the identification of the object representation (in terms of
'addresses). What the object descriptor refers to is éhe current representation. It is
the head of a list of all the object versions. Thus, restoring the previous state of an
object consists in substituting the necéssary links. Providing that a tag field is present
in the object descriplors for this purpose, the loading of obiecf rep.resentalions can be
postponed until their real use. Hence, when a set is enlered, the swapping of the
objects’ current versions on to the secondary storage is triggered by the kernel, and a
load tag is set in the descriptors so as to provoke the creation of a new version when
they are accessed for the first time. The creation of these new versions will provoke
the descriplors to be stamped wilh the current clock-lime so as to permit their

identificalion.

According to the object model, when a new object version is created only its "lrue”

Object descriptor ;

o®°

ol

x|

saved consistent states

Current rcpreslnlalion

Figure 5: Saving the state of an object.

componenis need !0 be provided with a new current version. Orlﬂy the first level of
the object structure is considered; it is a capability-list. This capability-list contains .
the identificalion of ils true componenls which themselves hold the identification of
their own true components and so forth down lo the primitive levels. These
components can be described in the object structure by a consistency-set. The
representalions of the lower level components are not direclly copied except when an
access is required since we only need to keep Irack of the modifications. Providing
that the load tag of an object is on, when the new version of this object is created, the
kernel can then enter ils consistency-sel and lrigger the creation of new versions for

ils components in the same way as for olher objects. New versions will thus be

created recursively for all components down to the primilive level. Hence, the only

r‘epresentaﬁous which are copied by lhe kernel are capability-lists, and when the
lowes!t level of the structure is reached, segments.

In addilion, objec! descriplors are provided with a process field that the enter
opcralion checks. Recall thal the enlering of a set which intersects with an already
entered set can only be made within the same process. Therefore when an enter
operalion is performed, each descriptor is stamped with the acling process
identification. If the process field is already filled, its contents should match the
execuling process idenlification; otherwise it could only be entered by an in operation.
The in operation only requires the declared subsel to be included in the covering sel;
the subsel is then linked to the covering set and to any other subsets that have been
entered already.

When a set is exiled, all the above informalion is removed. In addition the clock
field of the set des.criplor is updated so as to now refer to the most recent object
versions. Therefore, the free.use of these most recent version; without entering a set
should be avoided since it would destroy a consistent state. For this purpose, when a
set is exited, its object descriplors are initialized so as to trigger the creation of a
new version when an atlempt is made to access the corresponding objects. Multiple
copies that such a mechanism might imply can be avoided easily by use of the modity
tag usually provided in each object descriptor for the purpose of memory management.
Hence, when a set is enlered, lhe creation of new versions will not occur for objects
whose representation was not ailered.

Although it may look quite complicated al first glance, the management of .
consistency-sels is rather simple siTce it covers most of the usual aclions of the

does use more space on secondary storage than

virtual memory manager. However, it

a conventional virtual memory. We would like 1o point out thal a garbage collection is

any case necessary. Therefore, lhe secondary storage can be cleaned up by collecling

-the space of versions which are no longer referred lo by a sel. Each time a set is

stamped with a clock time the previous value of its clock field defines object versions
which are no longer usable. However, since the clock time of an object does not
necessarily malch the clock time of some set, care is neceded. Given an object version,

a count of the number of sets which refer o it should suffice to determine whether or

not the space that this version uses can be collected.

7. Conclusion.

Current recovery lechniques are limiled by the facl thal providing redundancy
implies the access o the repreaenla!fon of objects. Therefore, only local redundancy
can be provided, and recovery is eilller limited to errors detected at lower levels, or
implies constructing audil trials so thal aclions can be undone. The resulling
techniques involve careful design of the recovery aclions and consequently are more
likely fo be reserved lo the implementation of the lower levels of a=syslem.
Consistency-sets, on the olther hand, seem 10 provide a robus! and simple mechanism.
By relying direclly on the kernel of the system, they should also be more reliable than
techniques which require more programming assistance.

Although it was beyond the scope of this paper to discuss the implementation of
such a mechanism in delail, we have oullined it in order lo show that the implied
overhead 'should be small; providing a new version of an object representation usually
requires only secondary storage space allocation. Moreover, explicil redundancy and
consislency checks at the object level should be partly avoided since an old version
can always be relrieved. A copy operalion which can be implemented on the same
basis as the creation of a new version for an object allows access to such information.

The main problem that such a mechanism raises is increased secondary slorage
requirements and the collecting of the memory space used by non-accessible object
represenlalions. The saving of space on secondary storage can be included with fail
safe facililies where old versions would be periodically archived. However, the

problem of relrieving non-usable versions of objects remains.

21

BRIt e M o

i
'

k

8. References.

De76 Denning, P.J, Fault Tolerant Operating Systems, Computing Surveys,
(December 1976).

\ A Gr75 Gray, JN, RA. Lorie, GR. Pulzolu, LL. Traiger, Granularity Of Locks And
Degrees Of Consistency In A Shared Data Base, IBM Research Report, RJ
1654, (September 1975).

Li76 Linden, T.A, Operating System Structures To Support Security And
Reliable Software, Computing Surveys, (December 1976).

LZ74 Liskov, BH, S. Zilles, Programming With Abstract’ Data Types, SIGFLAN
Notices, (April 1974). :

Pa72 Parnas, D.L, On The Criteria To Be Used In Decomposing Systems Into
Madules, CACM, (December 1972).

1 Po78 Pollack, F.J, A Design Methodology For Fault Tolerant Software, FA.D.
Thesis, Carnegie Mcllon University, (1978).

Ra75 Randell, B, System Slructure For Software Fault Tolerance, IEEE
Transactions On Software Engineering, (June 1975).

SS75 Saltzer, JH, MD. Schroeder, The Protection Of Information In Compuler
Systems, Proccedings Of The IEEE, (September 1375).

Wu75 Wulf, WA, Reliable Hardware-Software Architecture, SIGPLAN Notices, 10,
6, (1975).

:';t,\ U M 'l\ CALSSIELC ATION OF THIS PAGE (Whea llm,- Latored)

- - REPORT-DOCUMENTATION PAGE B PE R TING, FORM
|'§£ PORT NUMBER W GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
AFOSRW{TR—"7 9 - 006 1
4. TITLE (and SubuTr'r 5. TYPE OF REPORT & PERIOD COVERED
$§r/bR ﬁECOVERY IN CAPABILITY SYSTEMS } Interim
/ > 2 2 __// |2~ PEREQRMING ORG..REPORT NUMBER
4 e e s (|4] cMu-Cs-78-127 b
7. AUTHOR(s) PO e \——"J.8. CONTRAGTOR GRANTY NUMBER(s)
ijq William Av/ﬁulf e Dldles/aanc1aux (/f;f F44620-73-C-0074

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
AR WORK UNIT NUMBERS

Carnegie-Mellon University / .
Department of Computer Sciences 611H0+E _A024

Pittsburgh, PA 15213
11. CONTROLLING OFF|CE NAME AND ADDRESS | TE .

: Defense Advanced Research Projects Agnecy)i Jun?&

} 1400 Wilson Blvd. S ?”NUWEERQLJMWES i
Arlington, VA 22209 24 e)

i
s 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURI

ASS. (of thi

Air TForce Office of Scientific Research/NM

Bolling AFB, Washington, DC 20332 UNCLASSIFIED

1Sa. DEC\.ASSIF CATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different {rom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

20 TRACT (Continue on reverse side if necessary and identify by block number)
<;‘siethodolog,ies and checking techniques have been proposed to improve software
reliability. It has also been argued that capability mechanisms are the natura
support for these techniques because they enhance modular decomposition and
information hiding.

However, there is a conflict between these observations; modular decompositig¢n
limits the possible recovery actions to the information that a module can
access directly. Each module st rely upon the reliability of those that it
uses. (Continued on back page)

DD . o™ 1473 UNCLASSIFIED AD 2 O f

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

AN o oy MR, oY, RS PR TR O P > e T o r v

SE :JPYV éLMSI: ICATION OF THIS PAGE(When Data Enterey)

PR 5
20, Abstract continued.

v
i e ieT
This paper presents a mechanism which allows recovery to be managed
at any level in this system while satisfying the information hiding
principle. It is based on a save-restore mechanism. In addition,

primitives to define consistent states in the system are provided
by the Kernel.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

